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Abstract 

This paper presents a standardization of catch per unit effort (CPUE) for the oceanic whitetip 
shark Carcharhinus longimanus taken by the Hawaii-based pelagic longline fishery during 
1994‒2019. This research was conducted because this species, once considered common in 
pelagic tropical waters of all major oceans, is now classified as ‘‘Threatened’’ under the U.S. 
Endangered Species Act (ESA) and “Critically Endangered” on the International Union for the 
Conservation of Nature (IUCN) Red List. Oceanic whitetip shark CPUE was standardized by 
application of a zero-inflated negative binomial model (ZINB) to data collected by the NOAA 
Pacific Islands Region Observer Program (PIROP). These analyses provided updated results 
based upon published work using data from 1995 to 2010 in which the ZINB model was 
determined to be appropriate for standardizing oceanic whitetip shark CPUE. This update has 
demonstrated that the ZINB model would converge over a longer time series, that the ZINB fit 
could be improved by including latitude, longitude, and sea surface temperature as covariates, 
and that use of the estimated marginal means (EMMs) was preferable to the ordinary marginal 
means (OMMs) to determine the temporal trend due to the unbalanced data set. Importantly, a 
decrease in CPUE on the order of 90% since the 1990s is a well-supported estimate, but the 
decrease was not linear throughout these years. Rather, the standardized CPUE decreased sharply 
during 2000‒2005 while the fishery instituted two-sector management and the PIROP increased 
its fleet-wide coverage rates for the Hawaii longline fishery. 
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Introduction 

As part of a collaborative research project with the Western Pacific Regional Fishery 
Management Council, we conducted alternative CPUE standardizations for several bycatch 
species taken by the Hawaiian pelagic longline fishery, including oceanic whitetip shark 
Carcharhinus longimanus. These CPUE standardization analyses entailed fitting alternative 
formulations of zero-inflated negative binomial (ZINB) models for each species. However, 
goodness-of-fit criteria and convergence patterns indicated that some of the ZINB models were 
not appropriate. This document presents the final CPUE standardization results using the best-
fitting ZINB model for oceanic whitetip shark. We compare our final results with the previous 
CPUE standardization analysis for oceanic whitetip shark in the Hawaii longline fishery based 
on multimodel inference (Brodziak and Walsh 2013).  
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Methods 

All statistical analyses were conducted with catch and operational data reported by the Pacific 
Islands Region Observer Program (PIROP) from February 1994 through December 31, 2019 
(PIRO 2021). The initial compilation of Hawaii longline fishery data included 90,634 longline 
sets. This initial compilation of 90,634 longline sets was filtered to yield a data frame with 
90,157 longline sets. A final series of data inspections led to the deletion of 18 more longline sets 
as likely observational errors. The reasons for all of these data deletions, including the 18 sets 
from the oceanic whitetip shark analyses conducted using 90,139 sets, are documented 
(Appendix A). All data preparation and computations were performed in R Version 4.3 (R Core 
Team 2020; Crawley 2013). This data preparation provided an improved basis for conducting 
CPUE standardization analyses to assess recent trends in the relative abundance of oceanic 
whitetip shark in the North Pacific Ocean. 

Standardized CPUE time series are commonly used to draw inferences about the relative 
abundance of non-target species in the absence of full stock assessments (Brodziak and Walsh 
2013). The CPUE standardizations for oceanic whitetip shark presented herein entailed fitting 
zero-inflated negative binomial (ZINB) models following previously published analytical 
methods (Brodziak and Walsh 2013; Walsh and Brodziak 2015). The ZINB model is a type of 
mixture model that is appropriate when data are characterized by a greater proportion of zero 
catches than expected under a standard discrete probability distribution (e.g., negative binomial) 
and the positive catches exhibit overdispersion (Zuur et al. 2009; 2012; Brodziak and Walsh 
2013). Here the observations of extra zeros can be due to observational errors or due to longline 
sets occurring in low quality pelagic habitat for oceanic whitetip sharks.  

We note that the ZINB model applied to standardize oceanic whitetip shark CPUE was a mixture 
model with two components. The first component was a binomial model, which measured the 
probability of observing a false or extra zero, denoted by π . The second component was a 
negative binomial count model with a mean catch rate parameter µ  and an overdispersion 
parameter k  that measured the probability of negative binomial zeros and positive catches (C) of 
oceanic whitetip shark. Thus, the ZINB model was comprised of a binomial and a non-negative 
count distribution for which a zero catch could occur as an extra zero with probability equal toπ  
or as a negative binomially-distributed zero with probability equal to 1-π . This compound 
structure determines the probabilities of a zero catch C=0 and a positive catch amount C=c for 
c>0 as 

(1) 
( ) ( )

( ) ( ) ( )
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!
Pr | 0 1

!( 1)!
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k c
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Given the zero-inflated negative binomial assumption, the expected catch C per hook was equal 
to the probability of not observing an extra zero times the mean catch rate parameter 

(2) [ ] ( )1E C π µ= −   
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and the variance of the catch was  

(3) [ ] ( ) ( )
2

2 21Var C
k
µπ µ µ π π


= − + + +

 
  

Under the ZINB model, the index of dispersion is always greater than unity and is a decreasing 
function of k and an increasing function of the extra zero probability with a variance to mean 
ratio (VMR) of  

(4) 
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1

1
1
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k

µπ πµ
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In general, we note that the ZINB model can exhibit overdispersion for both the binomial process 
generating extra zeros and the positive count process.   

Updating the ZINB standardization models for oceanic whitetip shark was important for two 
reasons. First, this species was long considered one of the most abundant pelagic sharks of 
tropical waters, but it is now officially classified as ‘‘Threatened’’ under the U.S. Endangered 
Species Act (ESA) and as “Critically Endangered” on the International Union for the 
Conservation of Nature (IUCN) Red List (Young and Carlson 2020). Therefore, fitting a revised 
ZINB model to update our published work (Brodziak and Walsh 2013) was an important priority 
for monitoring relative shark abundance. The second reason was to investigate whether we could 
improve the fit of a ZINB (i.e., a re-fit of the ZINB model throughout 1994‒2019) by applying 
additional predictors to better explain the trends in longline CPUE.  

We used the best-fitting ZINB model from Brodziak and Walsh (2013), or 2013 model, as the 
starting point for investigating whether the structure of the CPUE standardization model could be 
improved with additional predictors. To begin, standardized CPUE was fit using the best ZINB 
model structure as reported in Brodziak and Walsh (2013). Standardized CPUE values were 
predicted using both ordinary marginal means and estimated marginal means, a.k.a. least squares 
means (Searle et al. 1980, Lenth 2016).  Here we note that Brodziak and Walsh (2013) used only 
ordinary marginal means (OMM) to predict standardized CPUE based on the assumption that the 
longline data were adequately balanced with respect to the relative number of longline sets 
observed for each combination of predictors. Upon further investigation, it became clear that this 
assumption was probably not adequately satisfied for the bycatch of oceanic whitetip in the 
Hawaii longline fishery. As a result, we changed the analytical approach for predicting 
standardized CPUE in these analyses and used estimated marginal means to predict the best 
estimates of standardized CPUE. Estimates of CPUE based on ordinary marginal means were 
also included for comparison. Here it is important to note that the EMM predictions accounted 
for the unbalanced nature of the longline data by giving equal weights to each observed cell, or 
combination of predictive factors and covariates. Thus, we began the CPUE standardization 
analyses by fitting the 2013 ZINB model to the updated longline data using estimated marginal 
means as the best analytical approach and also using ordinary marginal means for comparison 
with the 2013 analyses.  
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In the search for potential improvements to the CPUE standardization model, we used the initial 
model fitting results to refine the configuration of predictors in the ZINB model for oceanic 
whitetip shark (Walsh, Brodziak, and Fitchett 2021). The revised standardization models were 
identified using forward entry variable selection with the 2013 model as the null model, or 
starting point (Brodziak and Walsh 2013; Walsh and Brodziak 2016). Factor variables and 
covariates used in these analyses are described in the footnote1, where factors in all R formula 
statements and model summary outputs are denoted by a suffix “F” and some covariate names 
are abbreviated. This usage is employed in all R formula statements and model summary results. 
The variables used to fit the ZINB models reflected the expected importance of temporal 
(annual, quarterly) and spatial (regions, latitude and longitude) effects, fishery sector effects that 
reflect the management regime, thermal effects as both a controlling and a directive factor (Fry 
1971), and the effects of several operational longline fishing gear parameters.  

When determining the best-fitting ZINB model with a revised set of predictors, it was important 
to note that there would be some confounding among potential explanatory variables in the 
CPUE standardization analyses. This confounding was partly due to differences in operational 
fishing practices between the shallow-set and deep-set fishery sectors. Therefore, to avoid use of 
overly complex models for analytical and predictive purposes, we applied a rule of thumb 
regarding the inclusion of model terms. This rule was that each factor variable or covariate that 
was included in the best-fitting ZINB model needed to reduce the AIC of the null model by at 
least 0.1% of the null AIC per degree of freedom. In comparison, for the 2013 standardization 
analyses, explanatory variables were required to reduce the absolute value of the fitted Akaike 
information criterion by at least 0.1% of the null model AIC (Brodziak and Walsh 2013; Walsh 
and Brodziak 2015), where the null model is the fitted model using only intercepts and an offset 
for hooks per set. Thus, in this updated standardization analysis, a similar but more rigorous 
standard was used to select predictors for the best-fitting model. The best-fitting, or base case 
standardization model was analyzed with the R package “emmeans”2 to calculate the estimated 
marginal means for the best estimate of standardized CPUE, and also with the “predict” function 
to calculate the ordinary marginal means for comparison.  

To begin the updated CPUE standardization analyses, we first summarize some descriptive 
statistics of oceanic whitetip shark catches during 1994−2019. We then describe the updated 
CPUE standardization analyses based on two fitted ZINB models. The first model is a simple 
update of the ZINB model used in the 2013 CPUE standardization fitted using the updated and 
filtered Hawaii longline observer data (Brodziak and Walsh 2013); this is the 2013 model. The 
second model is the best-fitting ZINB model that was identified based on our updated stepwise 
selection of explanatory variables using the variable selection criteria; this is the base case 

                                                 

 

1 Factor variables: Annual effects during 1994‒2019 (Haulyr_F); quarterly effects (Quarter_F) follow the calendar; 
spatial effects (Region_F) follow Brodziak and Walsh (2013); fishery sectors (Sector_F) follow the Federal Register 
(2004); several operational parameters (e.g., hook and bait types) follow the Hawaii Longline Observer Field 
Manual (2017).                                                                                                                                                       
Covariates: SST denotes sea surface temperature (℃); Soak_Time denotes the soak duration (begin-set through end-
haul); BS_Time denotes begin-set time.  
2 Available at: https://www.rdocumentation.org/packages/emmeans/versions/1.6.1 

https://www.rdocumentation.org/packages/emmeans/versions/1.6.1
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model. For both the 2013 and the base case models, we predicted standardized CPUE using 
EMMs to provide the best scientific information available and also predicted CPUE based on 
OMMs for comparison. The nominal CPUE of oceanic whitetip shark, expressed as sharks 
caught per 1000 longline hooks, was also calculated for comparison with the standardized CPUE 
time series. For comparison, we rescaled each of the CPUE time series to have an average value 
of unity during 1994−2019. We then compared the similarity of trends in the CPUE series using 
correlations and angular deviations and examined time trends using regression. Last, we included 
some information about the accuracy of self-reported shark catches in the commercial logbooks 
for the Hawaii longline fishery in response to changes in monitoring regimes. Here our purpose 
was to describe observed tendencies in self-reported logbooks that may be expected in other 
logbook data systems used to monitor threatened bycatch species. 
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Results 

The summary of longline catch statistics showed that the bycatch of oceanic whitetip shark was 
primarily a rare event in the Hawaii longline fishery with a nominal CPUE of 0.053 sharks per 
1,000 hooks deployed (Table 1). The total catch of oceanic whitetip shark during the study 
period was 9,501 sharks in a total of 90,139 longline sets. Of these, roughly 92% of the sets 
caught zero, 6% caught one and 2% caught multiple oceanic whitetip sharks. The average 
number of oceanic whitetip sharks caught per set was 0.11 sharks. Longline sets with zero 
reported catch increased from 86% in 1994 to 93% in 2019 while the percentage of sets with 
positive catches decreased by half, from 14% to 7% (Figure 1). Longline sets with multiple 
catches decreased from over 4% in 1994 to less than 1% in 2019. Thus, the long-term trends in 
oceanic whitetip shark catch statistics showed increases in longline sets with no catch and 
substantial decreases in longline sets with positive catch. Here we note that the nominal CPUE 
for the shallow-set sector was typically about 40% higher than for the deep-set sector. Most of 
the oceanic whitetip bycatch occurred on deep-sector longline sets targeting bigeye tuna (76%) 
while shallow-sector sets targeting swordfish accounted for about 19% of the catch. We also note 
that changes in the management regime for the longline fishery also had some effects on oceanic 
whitetip shark catches during two periods (1995–2000 and 2004–2006) when regulations for the 
shallow-set fishery changed (Walsh et al. 2009). Overall, the high proportion of zero catches of 
oceanic whitetip shark in the Hawaii longline sets supported the choice to apply a statistical 
mixture model comprised of zero-catch and positive catch components to standardize CPUE of 
this highly migratory shark (i.e., Lynch et al. 2012). 

The results of fitting the 2013 model fitted to the updated longline data with standardized CPUE 
calculated using estimated marginal means are shown in Tables 2.1 and 2.2 and the associated 
model summaries are shown in Appendix B. The results of the 2013 model fitting based on 
estimated marginal means were similar to the results of the 2013 analysis by Brodziak and Walsh 
(2013) with all predictors being statistically significant (P<0.0001). However, the 2013 model 
showed an improved fit to the updated data. In particular, the 2013 model explained 21.2% of the 
AIC of the null model, an increase of 1.4% over the 2013 paper analysis, which was fit to 
longline data during 1995-2010 (Table 2.1 and Brodziak and Walsh (2013, Table A2)). The 2013 
model also had higher percentages of AIC explained per degree of freedom than the 2013 paper 
analysis for each predictor, with the exception of the SST predictor in the counts model. Further, 
the 2013 model also had a lower overall median residual value of vs. a median 
residual 

0.16ε = −med

ed CPUE series for the 2paper analysis. The standardiz 013 
model and the 2013 paper analysis (Table 2.2) were also significantly positively correlated 

of 0.20= −medε in the 2013 

( )0.89, 0.0001, 1P < 6= nρ =  although the series were based on different longline data sets and 
different marginal mean predictions. Similarly, when one compares the standardized CPUE 
series for the 2013 model based on EMM vs. OMM (Table 2.2), one finds that the CPUE series 
were also significantly positively correlated all, the update 
of the 2013 model based on EMM showed a long-term decreasing trend in standardized CPUE of 
oceanic whitetip shark (Table 2.2) that was similar to that based on OMM and also that reported 
in Brodziak and Walsh (2013). 

( 0.91, 0.0001, 26P= < n = . ρ Over)
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The results of the variable selection to identify the best-fitting ZINB model are shown in Table 
3.1 and the associated model summaries presented in Appendix B. The primary difference 
between the 2013 model and the base case model (i.e., best-fitting ZINB) was the inclusion of 
latitude and longitude as predictors in the counts component of the latter model (Table 3.1). The 
base case model converged with an AIC value (47086.8) that was 13438.9 units less than the null 
model AIC (60525.7). As expected, the fishery sectors, fishing regions, and SST exerted strong 
effects as indicated by the decreases in AIC and decreases per degree of freedom. The other 
factor variables and covariates investigated in the variable selection search (see Footnote 1, 
above) did not reduce the AIC sufficiently for retention in the model. Thus, the base case CPUE 
standardization model had an overall structure that was very similar to the 2013 model. 

The effects of the various predictive variables on nominal catches of oceanic whitetip shark were 
visualized with scatterplot smoothers and boxplots (Figure 2) using the R package ggplot2 
(Wickham 2016). The scatterplot smoother of the year effect or temporal trend (Figure 2a) 
showed high catch rate values during the early years (i.e., 1994‒1999), followed by a steady 
decrease during 2000‒2005. The boxplot of the region effect (Figure 2b) was characterized by 
the high catch values in Region 2, which includes the US Line Islands. The boxplot of the fishery 
sector effect (Figure 2c) showed that both the deep-set and shallow-set sectors showed low catch 
rate values. The scatterplot smoothers for latitude (Figure 2d), longitude (Figure 2e), and sea 
surface temperature (Figure 2f) together showed that the tropical waters southwest of the 
Hawaiian Islands with SST ca. 27° represented the preferred habitat of oceanic whitetip sharks in 
the fishing grounds of the Hawaii longline fleet, as expected (Brodziak and Walsh 2013). 
Overall, each of the predictors had a significant impact on either the presence (Figure 2, panels 
(a) and (f)) or the catch amount (Figure 2, panels (a) through (f)) of oceanic whitetip shark in the 
base case CPUE standardization model for oceanic whitetip shark. Overall, the graphs of the 
empirical relationships between the predictors and the oceanic whitetip catch per set showed that 
there were nonlinear spatial and temporal gradients in nominal longline CPUE of oceanic 
whitetip shark. 

The standardized CPUE time series showed that there were temporal patterns in the estimated 
marginal means of oceanic whitetip CPUE in relation to other CPUE series. There was a highly 
significant positive Spearman correlation between standardized and nominal CPUE (Table 4 and 
Figure 3a). However, there were three years for which nominal CPUE fell outside the 95% 
confidence interval of standardized CPUE (1997, 1998, 2000) and it was apparent that the 
standardization model had a more substantial impact in the earlier years of the time series 
(Figure 2a). The standardized CPUE and the predicted CPUE series from the base case model 
using ordinary marginal means were also significantly positively associated, albeit with a lower 
correlation than for nominal CPUE (Table 4 and Figure 3b). In particular, the predicted CPUE 
series using OMMS fell outside the confidence interval of annual standardized CPUE in 10 out 
of 26 years suggesting that the treatment of the unbalanced nature of the longline fishery data 
was an important consideration in evaluating the relative abundances of oceanic whitetip shark 
using these data. The comparison of the standardized CPUE series with the standardized CPUE 
series based on the 2013 model showed that these series were very similar (Table 4 and Figure 
3c) with a highly significant Spearman correlation ( 0.978Sr = ). There was also a significant 
negative Spearman correlation between the standardized CPUE series and the estimated series of 
false zero probabilities ( 0.418Sr = − , Figure 3d). This suggested that as relative abundance of 
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oceanic whitetip shark and sets with positive catch declined over time that there could be a 
corresponding increase in either the chance of not observing a shark in preferred habitat or in the 
chance of not recording a shark observation. Last, we note that the application of estimated 
marginal means to predict standardized CPUE had a substantial impact on the variability of 
predicted CPUE (Figure 3e), where the coefficients of variation (CVs) of the ordinary marginal 
means were an order of magnitude higher than those based on estimated marginal means. 
Overall, we considered the standardized CPUE series to provide the best scientific information 
for measuring the trends in relative abundance in comparison to the other measures of abundance 
evaluated in this study. 

The strength of the relationships between the standardized CPUE series from the base case 
model and the other abundance measures was evaluated with linear regression. The CPUE time 
series compared were the estimated marginal means from both the best-fitting model and the 
base case model, the ordinary marginal means from the best-fitting model, and from the nominal 
mean CPUE, along with the CV for each value (Tables 2.2 and 3.2). Here we note that the CV 
values associated with the nominal mean CPUE and the ordinary marginal means series were 
always greater than those from the marginal means CPUE series. Several aspects of the linear, or 
first order relationships between CPUE estimates were analyzed (Figure 4). The relationship 
between the nominal mean CPUE and the estimated marginal mean from the base case 
standardization model was linear and through the origin (i.e., an initial test for the intercept was 
non-significant), but there were apparent differences. For example, the estimated marginal means 
from the base case model from1997 and 1999 were considerably greater than the nominal mean 
CPUE values from those years. The two EMM series were collinear and passed through the 
origin, whereas the ordinary marginal means included a significant intercept term in the 
regression on the estimated marginal means. The estimated probability of false zeros did not vary 
significantly during 1994‒2019 (Figure 4d). Also as noted above, the time series plots (Figure 
4e) of standardized vs. nominal CPUE without confidence intervals illustrate the overall effects 
of the CPUE standardization, which were substantial in the early years of the longline catch rate 
time series. 
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Conclusions 

Our revised standardization analyses have demonstrated that the zero-inflated negative binomial 
model for standardizing longline CPUE for oceanic whitetip shark presented by Brodziak and 
Walsh (2013) could be improved with a longer and more rigorously filtered data series and with 
improved analytical methods. The alternative models demonstrated that inclusion of latitude and 
longitude as linear predictors, in addition to the region as a factor, increased explanatory power. 
The SST was important in both components of the best-fitting model. Notably, the best-fitting 
model was a moderate revision of the published basic model (Brodziak and Walsh 2013), with 
latitude and longitude included in the counts model as well as with the application of estimated 
marginal means for standardized CPUE prediction. 

We conducted additional evaluations of the approved PIROP longline data before attempting to 
refit the ZINB model to standardize CPUE of oceanic whitetip shark in this longline fishery 
during 1994‒2019. This led to deletion of 18 longline sets (about 0.02% of the data), but these 
were highly improbable outliers. Thus, although the PIROP conducts detailed data checking 
procedures, additional data filtering and evaluations proved to be appropriate and indeed 
necessary. 

The two primary analytical objectives of this project were met in full. First, the previously fitted 
ZINB model, developed by model selection (Brodziak and Walsh 2013), converged over this 
longer time series. Second, it was possible to improve the ZINB model fit by inclusion of latitude 
and longitude as covariates. Because both the filtered data frame and model object have been 
provided as deliverables, this CPUE standardization analysis could be updated periodically if so 
desired. Data preparation for such updates should be straightforward; the methods described in 
Appendix A could be applied to data collected during or after 2020, and the new data would then 
be appended to the present data frame.  

The results include the fitting and comparisons of the base case and best case ZINB models, and 
application of the best case ZINB model to generate the EMM time series. These values were 
much less variable than the nominal mean CPUE values, and were better suited for application 
with unbalanced data.  

The standardized and nominal CPUE trends were significant and negative during 1994‒2019, 
whereas the regression of the probability of false zeros on years was not significant. We 
conclude that a decrease in CPUE of on the order of 90% since the 1990s is a well-supported 
estimate, but the decrease was not linear throughout these years. Rather, the standardized CPUE 
decreased sharply during 2000‒2005 while the fishery instituted two-sector management and the 
PIROP increased its fleet-wide coverage rates for the Hawaii longline fishery. 
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Table 1. Summary of descriptive catch statistics for oceanic whitetip shark taken by the 
Hawaiian longline fishery, including total numbers caught, nominal catch per unit effort 
(CPUE as measured by catch numbers per 1000 hooks), mean catch per set, percentage of 
sets with positive catches, as well as shark catches sorted by target species (SWO is 
swordfish, Xiphias gladius and BET is bigeye tuna, Thunnus obesus) and the deep- and 
shallow-set fishery sectors. All summaries were calculated using the best scientific 
information available consisting of the 90,139 observed longline sets from 1994 to 2019.  

Total 
catch 

Nominal 
mean 
CPUE 

Mean 
catch per 

set  

Percentage 
of positive 
catch sets 

 

Percentages of 
catch relative to 
target species 3    

SWO    BET   Other 

9,501 0.053 0.110 7.7%    19%   76%    5% 

Nominal 
mean CPUE 

relative to 
target species          
SWO    BET    

  

Nominal mean CPUE   
by fishery sector 

Shallow      Deep  

0.049     0.053       0.070         0.050 

                                                 

 

3 “Other” denotes all other species that were primary or secondary targets (e.g., yellowfin tuna, blue marlin). 
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Table 2. Summary of the forward entry variable selection for the updated 2013 model 
fitted to PIROP data collected during 1994−2019 consisting of 90,139 longline sets, where 
df is degrees of freedom, ∆AIC is the change in AIC, ∆AIC per df is the change in AIC per 
degree of freedom and median residual is the median of the model residuals. 

Zero-inflated negative binomial GLM 

Parameter df ∆AIC ∆AIC      
per df 

Median 
residual 

Counts Model 

Intercept 1 --- --- -0.25 

Haul-end year 25 3894.4 155.8 -0.23 

Fishing region 7 5162.6 737.5 -0.19 

Fishery sector 1 1088.4 1088.4 -0.19 

SST  1 421.2 421.2 -0.18 

Zeros Model 

SST  1 2038.8 2038.8 -0.17 

Haul-end year 25 246.3 9.9 -0.16 

Null mixture model with two intercepts: Null AIC = 60525.7 

Fitted 2013 model: AIC = 47674.1 and ∆AIC = 12851.6 

Dispersion parameter for ZINB model: 1.04θ =  
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Table 3. Relative abundance indices based on the rescaled CPUE standardization results 
for the 2013 model as well as rescaled nominal CPUE. 

Year 

2013 
Ordinary 
Marginal 

Mean 
CPUE 

2013 
OMM 

CPUE CV 

2013 
Estimated 
Marginal 

Mean 
CPUE 

2013 
EMM 

CPUE CV 

Scaled 
OMM 
Mean 
CPUE 

from 2013 
Paper 

Nominal 
Mean 
CPUE 

Nominal 
CPUE CV 

1994 1.190 1.62 1.505 0.18  1.602 2.97 

1995 2.788 1.30 3.134 0.17 2.02 3.684 2.84 

1996 2.305 1.26 2.594 0.16 1.82 3.206 2.55 

1997 2.064 1.76 3.307 0.15 1.97 2.229 2.73 

1998 2.421 1.36 1.619 0.24 2.07 2.724 2.46 

1999 2.933 1.54 3.601 0.15 1.99 2.459 2.40 

2000 1.739 1.32 0.995 0.19 1.19 1.535 2.99 

2001 2.079 1.34 1.689 0.11 1.39 1.578 2.37 

2002 1.204 1.32 1.272 0.09 0.77 0.940 3.09 

2003 0.897 0.77 1.131 0.17 0.62 0.699 2.81 

2004 0.961 1.23 0.200 0.23 0.67 0.778 3.47 

2005 0.598 1.29 1.069 0.09 0.41 0.886 4.58 

2006 0.382 1.44 0.362 0.27 0.26 0.281 4.40 

2007 0.375 1.32 0.560 0.11 0.26 0.388 6.18 

2008 0.187 1.43 0.352 0.14 0.13 0.182 6.30 

2009 0.302 2.02 0.338 0.15 0.21 0.257 5.50 

2010 0.295 1.73 0.325 0.17 0.21 0.286 5.61 

2011 0.312 1.29 0.321 0.16  0.292 6.73 

2012 0.219 1.84 0.172 0.18  0.158 6.06 

2013 0.229 1.88 0.121 0.29  0.182 6.36 

2014 0.405 1.71 0.184 0.21  0.268 4.43 

2015 0.595 1.47 0.283 0.17  0.400 3.98 
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Year 

2013 
Ordinary 
Marginal 

Mean 
CPUE 

2013 
OMM 

CPUE CV 

2013 
Estimated 
Marginal 

Mean 
CPUE 

2013 
EMM 

CPUE CV 

Scaled 
OMM 
Mean 
CPUE 

from 2013 
Paper 

Nominal 
Mean 
CPUE 

Nominal 
CPUE CV 

2016 0.548 1.14 0.316 0.16  0.379 3.84 

2017 0.279 1.11 0.201 0.21  0.194 5.15 

2018 0.257 1.62 0.147 0.23  0.163 6.07 

2019 0.434 0.92 0.203 0.22  0.252 3.85 

Average 
1994-2019 1.000 1.42 1.000 0.18 1.000 1.000 4.22 

Average 
1994-1999 2.284 1.47 2.627 0.17 1.975 2.651 2.66 

Average 
2000-2004 1.376 1.20 1.057 0.16 0.927 1.106 2.95 

Average 
2005-2009 0.369 1.50 0.536 0.15 0.255 0.399 5.39 

Average 
2010-2014 0.292 1.69 0.225 0.20  0.237 5.84 

Average 
2015-2019 0.423 1.25 0.230 0.20  0.278 4.58 
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Table 4. Summary of the forward entry variable selection results for the base case ZINB 
model with latitude and longitude included in the counts component fitted to PIROP data 
collected during 1994−2019 consisting of 90,139 longline sets, where df is degrees of 
freedom, ∆AIC is the change in AIC, ∆AIC per df is the change in AIC per degree of 
freedom and median residual is the median of the model residuals. 

Zero-inflated negative binomial GLM 

Parameter df ∆AIC ∆AIC      
per df 

Median 
residual 

   Counts Model 

Intercept 1 --- --- -0.25 

Haul-end year 25 3894.4 155.8 -0.23 

Fishing region 7 5162.6 737.5 -0.19 

Fishery sector 1 1088.4 1088.4 -0.19 

Latitude 1 758.2 758.2 -0.18 

Longitude 1 638.2 638.2 -0.18 

SST 1 1238.5 1238.5 -0.16 

   Zeros Model 

SST  1 481.3 481.3 -0.16 

Haul-end year 25 167.7 6.7 -0.16 

Null mixture model with two intercepts: Null AIC = 60525.7 

Base case model: AIC = 47086.8 and ∆AIC = 13438.9 

Dispersion parameter for ZINB model: 1.09θ =  



 

18 

Table 5. Rescaled CPUE standardization results for the base case model using EMM and 
OMM predictions along with the estimated time series of false zero probabilities. 

Year 

Estimated 
Marginal 

Mean 
CPUE 

EMM 
CPUE CV 

Ordinary 
Marginal 

Mean 
CPUE 

OMM 
CPUE CV 

Estimated 
Probability 

of False 
Zero 

1994 1.482 0.20 1.209 1.73 0.49 

1995 3.149 0.19 2.693 1.16 0.37 

1996 2.602 0.18 2.261 1.15 0.36 

1997 3.473 0.15 1.952 1.62 0.51 

1998 1.738 0.24 2.379 1.34 0.40 

1999 3.091 0.17 3.017 1.54 0.45 

2000 0.958 0.20 1.681 1.23 0.35 

2001 1.545 0.12 2.149 1.46 0.13 

2002 1.227 0.11 1.227 1.38 0.03 

2003 1.150 0.18 0.917 0.90 0.11 

2004 0.199 0.28 0.985 1.29 0.27 

2005 1.122 0.11 0.603 1.32 0.25 

2006 0.404 0.28 0.391 1.55 0.31 

2007 0.527 0.12 0.383 1.49 0.27 

2008 0.397 0.14 0.190 1.41 0.43 

2009 0.350 0.15 0.309 2.10 0.42 

2010 0.334 0.18 0.302 1.88 0.53 

2011 0.321 0.17 0.317 1.48 0.51 

2012 0.201 0.19 0.220 1.88 0.56 

2013 0.246 0.36 0.236 1.83 0.47 

2014 0.249 0.25 0.414 1.81 0.50 

2015 0.309 0.21 0.611 1.59 0.53 

2016 0.330 0.19 0.564 1.26 0.52 
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Year 

Estimated 
Marginal 

Mean 
CPUE 

EMM 
CPUE CV 

Ordinary 
Marginal 

Mean 
CPUE 

OMM 
CPUE CV 

Estimated 
Probability 

of False 
Zero 

2017 0.238 0.23 0.284 1.22 0.48 

2018 0.155 0.27 0.262 1.75 0.59 

2019 0.204 0.26 0.445 1.02 0.38 

Average 
1994-2019 1.000 0.20 1.000 1.48 0.39 

Average 
1994-1999 2.589 0.19 2.252 1.42 0.43 

Average 
2000-2004 1.016 0.18 1.392 1.25 0.18 

Average 
2005-2009 0.560 0.16 0.375 1.57 0.34 

Average 
2010-2014 0.270 0.23 0.298 1.77 0.51 

Average 
2015-2019 0.247 0.23 0.433 1.37 0.50 
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Table 6. Matrix of Spearman rank correlations (in bold below diagonal) and angular 
deviations (in bold above diagonal) among the standardized CPUE series 
(Standardized EMM), the CPUE series based on the 2013 model using EMMs 
(Standardized 2013 EMM), the predicted CPUE series using OMMs (Standardized OMM), 
and the nominal CPUE series. 

----- Standardized 
EMM  

Standardized 
2013 EMM  

Standardized 
OMM Nominal 

Standardized 
EMM CPUE ----- 4.5° 18.5° 11.9° 

Standardized 
2013 EMM 

0.98 

P < 0.0001 
----- 17.6° 18.3° 

Standardized 
OMM 

0.76 

P < 0.0001 

0.80 

P < 0.0001 
----- 14.1° 

Nominal 
0.85 

P < 0.0001 

0.86 

P < 0.0001 

0.95 

P < 0.0001 
----- 
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Figure 1. Trends of annual mean zero (open circles) and positive catches (solid circles) 
of oceanic whitetip sharks in the Hawaii longline fishery as reported by PIROP observers 
during 1994−2019. 
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Figure 2. Scatterplot smoothers or boxplots showing the effects of CPUE predictors on the nominal catch per set of oceanic whitetip shark in the Hawaii longline 
fishery during 1994-2019. Effects of CPUE predictors on nominal catch per set are: (a) year, (b) region, (c) fishery sector, (d) latitude, (e) longitude, (f) sea surface 
temperature. 
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Figure 3. Plots of standardized CPUE with 95% confidence intervals vs. (a) nominal CPUE, (b) predicted standardized CPUE using ordinary marginal means, (c) 
standardized CPUE based on the 2013 model relative abundance and (d) the probability of a false zero, as well as (e) the comparison of the time series of annual 
coefficients of variation of standardized CPUE and other relative abundance indices. 
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Figure 4. Plots of the (a) estimated marginal means from the base case standardization model vs. the nominal mean CPUE, (b) estimated marginal means from the 
2013 model vs. the base model marginal means CPUE, (c) ordinary marginal means vs. the estimated marginal means from the base case model, (d) the probability 
of a false zero, and (e) the nominal and standardized CPUE time series.  
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Figure 4 continued—  

 



 

26 

Appendix A. Summary of some R language commands used in the 
preparation of data for CPUE standardization for oceanic whitetip shark. 

Appendix A summarizes some of the procedures and associated R language commands used in 
preparing the Hawaii longline observer data. These data were used to fit the zero-inflated 
negative binomial models for oceanic whitetip shark Carcharhinus longimanus in the Hawaiian 
longline fishery during 1994−2019. Some noteable R language statements are in listed in 
boldface. 

Initial data acquisition 

Two sets of files were obtained from Mark Fitchett of the WPRFMC on September 2-3, 2020. 
These were operational and catch data EXCEL files (tab-delimited) for 1994 through 2019, 
named “HI LL Set Data 1994.csv”, “HI LL Set Data 1995.csv”, …,“HI LL Set Data 2019.csv”.  
and “HI LL Catch Data 1994.csv”, “HI LL Catch Data 1995.csv”,…, “HI LL Catch Data 
2019.csv”. 

Import into R for analytical processing 

These annual EXCEL files were saved as plain text and read into R language data sets using the 
read.csv statement. Here are the read statements for 1994 data, for example: 

catch_94<-read.csv(“HI LL Catch Data 1994,” as.is=T, sep= “t,” and 

set_94<-read.csv(“HI LL Set Data 1994,” as.is=T, sep= “\t.” 

There were 25 and 58 fields in the resulting catch and set data frames. The number of rows in the 
set data frame corresponded to the observations, which were the uniquely identified longline 
sets. This process was repeated until set and catch data frames for 1994−2019 had been prepared.   

Data compilation 

The annual set data with operational parameters were concatenated into vectors. Here is an 
example for 1994: 

Hooks<-c(set_94$NUM_HKS_SET,set_95$NUM_HKS_SET…, set_19$NUM_HKS_SET);  

Trip_ID<-c(set_94$TRIP_ID,set$95$TRIP_ID…, set_19$TRIP_ID). 

These vectors were then combined to form a data frame:                                                                  
Bycatch_DF<-data.frame(Hooks, TRIP_ID, …) .  

The catch data were compiled differently because each fish is a separate record. To do so, a new 
field (“TRIP_SET”) was created for use as a unique set identifier using the paste function:                                                  
TRIP_SET<-paste(DF$TRIP_ID,DF$SETNUM). This identifier was used with the tapply 
function to obtain the species-specific catch by counting the number of records:                                                                                                                                                                                                              
junk<-catch_94[catch_94$SPECIES_COMMON_NAME==“Shark, Oceanic White-Tip,”] 

OWT_94<-tapply(junk$ SPECIES_COMMON_NAME, junk$TRIP_SET,length). 

Identifiers were again created using the paste function:                                                  
junk$TRIP_SET<-paste(junk$TRIP_ID,junk$SETNUM). 

TRIP_SET_94<-tapply(junk$TRIP_SET,junk$TRIP_SET,unique).  

The “tapply” function returns an array, which were converted to vectors, as follows: 

OWT_94<-as.vector(as.array(OWT_94)), and 

TRIP_SET_94<-as.vector(as.array(TRIP_SET_94)). 

These annual vectors were concatenated so that data from all years were compiled:  

OWT_Shark<-c(OWT_94,OWT_95,…,OWT_18,OWT_19).   
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TRIP_SET<-c(TRIP_SET_94, TRIP_SET_95, …, TRIP_SET_18, TRIP_SET_19). 

These vectors were combined into a data frame, and the match function was used to add the 
catch data to the correct rows in the data frame. “NA” values were converted to zeros using 
Bycatch_DF$OWT_Shark<-ifelse(is.na(Bycatch_DF$OWT_Shark,0, 
Bycatch_DF$OWT_Shark). 

These procedures were used to obtain the other species-specific catch data. It is important to note 
that the EXCEL files for 2018 and 2019 had their formats revised and now have their fields in 
lower-case letters; importing them into R is case-sensitive and requires use of lower case letters. 

Loading, initial checks, and deletions from the data frame 

The data frame with all sets during 1994−2019 (90,634 sets) had already been loaded. A total of 
477 sets were deleted within R, leaving a reduced data frame that included 90,157 longline sets. 
This file was named “Bycatch_DF_1.” The deleted records and associated statements are listed 
below: 

The hooks per float field (Hkpfl) had the largest number of NA values (76). Three trips had NA 
values for every set (36 in total), although all other operational data fields were present. Another 
trip exhibited errors (e.g., identical entries for begin and end date/time fields and a questionable 
hook number). All other sets were corrected using trip data and data from the histories of the 
vessels, leaving 6576 trips with 90,589 sets.                                                                                            
Deleted (TRIP_ID)= “FSZ265915”; “TVX703934”; “FDL547084”; “AAQ540453.” 

The latitude and longitude fields were checked for both missing and “out of range” (i.e., eastern 
or southern hemispheres) values. Ten trips that fished south of the equator were deleted, leaving 
6566 trips with 90,463 sets. Five trips deployed sets in the Eastern Hemisphere. NA values for 
latitude (6) and longitude (9) were corrected using trip data, leaving 6561 trips with 90,405 sets.                                                                                                                                          
Deleted (TRIP_ID)= “SSE167838”; “UAM606939”; “ZQN591533”; “AJB674190”; 
“FRB975381”; “HDJ346191”; “XWK925179”; “OIX836410”; “YDF372876”; “VYR540817”; 
“HVM851339”; “ADG287033”; “IPG441874”; “OUR638548”; “VTD946731.”                                                                                                          

Soak durations were checked for missing, impossible (i.e., negative values caused by errors in 
the Set or Haul Date/Time fields), and aberrant (i.e., ≤2 hours or ≥48 hours) values. Totals of 86 
short and 45 long sets and 17 NA values were deleted, leaving 6559 trips with 90,257 sets. 

Hook numbers were checked for very low (<200) and high (>4000) values. Deletion of two trips 
with multiple sets with low hook numbers, low fish catches, and short soak times (i.e. <5 h), 34 
individual sets, and seven NA values, left 6557 trips and 90,185 sets. Checks on high hook 
numbers began with the maximum (5280), apparently a transposition; 13 other sets on the trip 
deployed 2024−2737 hooks. This was corrected to 2580. A trip with that included five sets with 
>4000 hooks and seven NA was deleted, leaving 6556 trips and 90,173 sets.                                                                                                                                           
Deleted (TRIP_ID)= “WVZ774086”; “BQX941669”; “KDH407580.” 

A double-check on high numbers of hooks per float detected a trip with high numbers of hooks 
per float (50−53), low hook numbers (741−954), and short soak times (11.8−16.9 h). Deletion 
left 6555 trips and 90,164 sets.                                                                                                      
Deleted (TRIP_ID)= “FDF760033.” 

Catch data were checked by applying the “table” function to catches of each species. The 
maximum catch of blue sharks (359) was taken on a trip with a single set that had a long soak 
duration (45 h) and only two swordfish caught. This was deemed to have been problematic. 
Deletion left 6554 trips and 90,163 sets.                                                                                            
Deleted (TRIP_ID)= “EIE503148.” 

Final data preparation steps 

The EXCEL files read into R included many character variables. Substrings were obtained using 
the substr function, with their modes then changed from “character” to “numeric.” Eleven fields 
that were no longer required were removed, using the DF$"X" <- NULL function.  

Double-checks on fishing dates revealed six sets deployed on December 31, 2019, with the haul 
completed during 2020. These six sets were deleted, leaving 90,157 sets.  
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Detailed checks of the final data frame 

A series of detailed checks identified an additional 18 questionable observations that included 
errors. These 18 longline set records were deleted and are listed below. The result was a data 
frame with 90,139 sets, named OWT_Data.  

(1)           “WVR965765 17”: This set from Trip LL0236 exhibited exact agreement 
between the observer and logbook for swordfish and blue shark, but the logbook listed 
one shortfin mako whereas the observer listed one oceanic whitetip shark. This was 
from December 1999; the SST and region typical of shortfin mako habitat.                                                                                                                                                 
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to shortfin mako. 

(2)           “ZMP227973 1”: This observer record from Trip LL0280 was in reasonable 
agreement with the logbook for swordfish (Observer: 17; logbook: 15) and blue shark 
(Observer:15; logbook: 18), but the observer listed one shortfin mako and one oceanic 
whitetip shark whereas the logbook listed two mako sharks. This trip was during 
January-February 2000 when SST was ca. 18°C.                                                      
Conclusion: Misidentification.                                                                                                                            
Action: Oceanic whitetip shark corrected to shortfin mako. 

(3)           “VCZ151915 2”: This set from Trip LL1575 was compared to the logbook, 
which listed 57 caught blue sharks, all of which were released. The observer record is 
56 blue sharks and one oceanic whitetip shark. SST ca. 17°C and latitude ca. 32°N. 
This trip was from February 2005.                                                    
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark. 

(4)           “XXG343661 12”: This set from Trip LL1995 was compared to the logbook, 
which listed three caught blue sharks. The observer record is one blue shark and one 
oceanic whitetip shark. SST ca. 18°C and latitude ca. 32°N. This trip was from January 
2006.                                                                                Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark. 

(5)           “RQQ190650 16”: This set from Trip LL3076 during February 2009 was 
compared to the logbook. The blue shark, shortfin mako, and swordfish entries agreed. 
There was no oceanic whitetip shark listed in the logbook, but the observer listed one. 
The region (ca. 31°N, 161°W), and SST (ca.18°C) were typical of blue shark or 
shortfin mako habitat.                                                                                                                                                          
Conclusion: Probable observer error.                                                                                                                           
Action: Oceanic whitetip shark corrected to zero. 

(6)           “JFB344425 12”: This set from Trip LL3466 during February 2010 was in a 
region (ca. 31°N, 150°W), and SST (ca.17°C) typical of shortfin mako habitat. The 
observer listed ≥1 shortfin mako(s) on all other sets. The one oceanic whitetip shark 
listed was on a set that listed zero shortfin makos.                                                                                                                           
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to shortfin mako. 

(7)           “DFA302597 20”: This set from Trip LL3522 during April 2010 had observer 
reports of 15 blue sharks, one oceanic whitetip shark, and one shortfin mako, whereas 
the logbook listed 16 blue sharks and one shortfin mako. The region (ca. 30°N, 
160°W), and SST (ca.19°C) were typical of shortfin mako habitat.                                                                                                                  
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to shortfin mako. 

(8)           “LAQ896049 20”: This set from Trip LL3748 during November 2010 was in 
typical shortfin mako and blue shark habitat (ca. 37°N, 140°W; SST ca.17°C). Blue 
sharks were caught on every set, and shortfin makos were caught on 18 of 23 sets. ca. 
31°N, 150°W), and SST (ca.17°C).                                             
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(9)           “IZP845113 1”: This set during November 2008 was in typical blue shark and 
shortfin mako habitat (ca. 38°N, 136°W; SST ca.18°C).                                                                                                                          
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(10) “QKA915079 3”: This set from Trip LL3866 during November 2010 was in 
typical blue shark and shortfin mako habitat (ca. 32°N, 164°W; SST ca.18°C). This 
was the final set of a long (18 sets) trip. On average, 10 blue sharks were caught on 
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each set, and shortfin makos were also caught on 13 sets.                                                                                                                          
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(11) “NGH715914 3”: This set from Trip LL4236 during March 2012 was in typical 
blue shark and shortfin mako habitat (ca. 30°N, 160°W; SST ca.20°C). The observer 
reported four blue sharks, one oceanic whitetip shark, and one shortfin mako, whereas 
the logbook listed five blue sharks.                               
 Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(12) “OPH316007 13”: This set from was from Trip LL4491 during January 2013. 
This trip was in typical blue shark and shortfin mako habitat (ca. 35°N, 135°W; SST 
ca.16°C). The observer reported blue sharks on every set and shortfin makos on 16 of 
28 sets. One oceanic whitetip shark was reported on a set with zero shortfin makos, 
which also had eight blue sharks caught.                                                               
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(13) “NLN280450 1”: This set from was from Trip LL4550 during March 2013 in 
typical blue shark and shortfin mako habitat (ca. 32°N, 163°W; SST ca.18°C). The 
observer reported blue shark catches on 23 of the 29 sets, shortfin makos on 15 sets, 
and an oceanic whitetip shark on one set.                               
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(14) “YBA915780 1”: This set from was from Trip LL4566 during March 2013 in 
typical blue shark and shortfin mako habitat (ca. 25°N, 152°W; SST ca.21°C). The 
observer reported blue sharks caught on 10 of 12 sets, shortfin makos on five sets, and 
an oceanic whitetip shark once.                                                  Conclusion: 
Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(15) “EPJ729658 7”: This set from was from Trip LL6219 during January 2018. The 
observer listed one oceanic whitetip shark on a set with 13 shortfin makos. in typical 
blue shark and shortfin mako habitat (ca. 35°N, 135°W; SST ca. 18°C).                                                                                                                   
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(16) "SQP124811 2": This set from Trip LL6322 was from Trip LL6219 during 
March 2018. The observer reported blue sharks on all of the 16 sets, shortfin makos on 
seven sets, and one oceanic whitetip shark on a set with six blue sharks. This was 
typical blue shark and shortfin mako habitat (ca. 25°N, 160°W; SST ca. 21°C).                                                                                                                                                    
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

(17) "SMG249253 9": This set during December 2008 was hampered by bad 
weather (Beaufort state 5−6) and was deleted.  

(18) The observer from Trip 2336 was newly hired and on his first trip.                                                            
Conclusion: Misidentification.                                                                                                                             
Action: Oceanic whitetip shark corrected to blue shark 

 

The result of these checks reduced the number of longline sets in the data frame to 90,139 sets. 
The R object was named “OWT_Data”, and copied as Bycatch_Data and 
Bycatch_Data_OWT to avoid errors. 

Checks of individual fields in the final data frame 

The individual data frame fields were checked using the sum, class, mode, and unique 
functions. By so doing, it ensured that arithmetic operations would be feasible, and the unique 
function returns the “NA” or “not available” along with the other values if any remain. The 
numerical data fields were also checked with the logical function is.integer. The summary 
function was also used to check the variable attributes and to identify unexpected values in 
numerical fields.  
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Manipulations of fields 

The principal data manipulations entailed preparation of factor variables from several numerical 
and character variables. Factor variables were denoted by the suffix “_F.” 

Bycatch_Data_OWT$Haulyr_F<-factor(Bycatch_Data_OWT$Haulyr). 

This was checked by attempting to obtain the sum of these numeric and factor fields: 

sum(Bycatch_Data_OWT$Haulyr) 

[1] 181153237 

> sum(Bycatch_Data_OWT$Haulyr_F) 

Error in Summary.factor(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  :  

  Noting that sum is not applicable to factor variables. 

The fishery sector was a character variable, manipulated as follows: 

> Bycatch_Data_OWT$Sector_F<-ifelse(Bycatch_Data_OWT$Sector==“Deep,” “1,” “2”) 

> table(Bycatch_Data_OWT$Sector_F) 

    1         2  

69809 20303  

> Bycatch_Data_OWT$Sector_F<-as.factor(as.character(Bycatch_Data_OWT$Sector_F)) 

> table(Bycatch_Data_OWT$Sector_F) 

    1        2  

69809 20303  

> sum(Bycatch_Data_OWT$Sector_F) 

Error in Summary.factor(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,  :  

  Noting that sum is not applicable to factor variables. 

These procedures were continued until the other necessary factors (e.g., fishing regions) had 
been entered into the data frame.   

Data tabulations and summaries 

The table function was applied to calculate annual sets, for example: 

> table(Bycatch_Data_OWT$Haulyr) 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009  

 500   537   629   497    591   441 1424 2800 3429 3161 4016 5006 4179 5102 5490 5276  

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019  

5194 5028 5036 4775 5129 4740 3880 4234 4449 4596 

> table(Bycatch_Data_OWT$Haulyr_F) 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009  
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 500   537   629   497    591   441 1424 2800 3429 3161 4016 5006 4179 5102 5490 5276  

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019  

5194 5028 5036 4775 5129 4740 3880 4234 4449 4596 

Numeric and factors have the same numbers per year, as expected. 

Two-way tabulations were applied to obtain the sector-specific annual set totals, as follows: 

> table(Bycatch_Data_OWT$Sector_F,Bycatch_Data_OWT$Haulyr_F) 

     1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

  1  176   266   278   178    274  265   977  2627 3405 3144 3881 3366 3333 3536 3899 

  2  323   271   350   319    317  176   447    173    24    17    135  1639  846 1566 1590 

     2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

  1 3517 3340 3558 3675 3815 3793 3574 3214 3377 4056 4285 

  2 1758 1853  1470 1361  960 1336 1154   665  857   385   311 

The tapply function was also used to calculate various descriptive statistics (e.g., sums, means, 
standard deviations, variances, medians, etc.) for variables indexed on other(s), as shown: 

> tapply(OWT_Data$OWT_Shark,OWT_Data$Haulyr_F,mean) 

      1994          1995             1996          1997              1998           1999            2000  

0.20400000 0.45065177 0.40222576 0.34607646 0.44500846 0.48979592 0.30477528  

      2001            2002             2003           2004            2005            2006          2007  

0.34178571 0.22513852 0.16355584 0.17504980 0.11506193 0.07106963 0.06997256  

      2008          2009              2010           2011            2012            2013            2014  

0.03515483 0.05705080 0.05660377 0.06026253 0.03991263 0.04544503 0.07525833  

      2015            2016           2017          2018            2019  

0.11350211 0.10128866 0.05172414 0.05057316 0.08050479  

> tapply(OWT_Data$OWT_Shark,OWT_Data$Haulyr_F,sum) 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009  

 102   242    253  172    263  216   434    957  772   517   703   576   297   357   193   301  

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019  

 294   303   201   217   386   538   393   219   225   370  

Total catch of Oceanic Whitetip Shark 
> sum(OWT_Data$OWT_Shark) 
[1] 9501 
The catch was 9501 OWT. 
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Appendix B . Summary of fitted model output for the 2013 (Table B.1) and 
best-fitting ZINB models (Table B.2). 

Table B. 1. The R summary function output for the 2013 paper model structure (fitted 
model object is OWT_2013_ZINB) , based on the results of the forward-entry variable 
selection shown in Table 2. 

> f_2013<-formula(OWT_Shark~Haulyr_F+Region_F+Sector_F+SST+offset(log(Hooks))  | 
SST +Haulyr_F) 
> OWT_2013_ZINB<-zeroinfl(f_2013,data=OWT_Data,dist=“negbin,” link=“logit”) 
> summary(OWT_2013_ZINB) 

Call: zeroinfl(formula = f, data = OWT_Data, dist = “negbin,” link = “logit”) 

Pearson residuals: 

     Min        1Q        Median       3Q         Max  

-0.89168 -0.30300 -0.16413 -0.02618 42.93640  

Count model coefficients (negbin with log link): 

               Estimate   Std. Error z value Pr(>|z|)     

(Intercept)   -10.45292    0.54605 -19.143  < 2e-16 *** 

Haulyr_F1995   0.93849    0.16940   5.540 3.02e-08 *** 

Haulyr_F1996   0.55278    0.16242   3.403 0.000665 *** 

Haulyr_F1997   0.70427    0.17603   4.001 6.31e-05 *** 

Haulyr_F1998   0.40163    0.16906   2.376 0.017519 *   

Haulyr_F1999   0.92535    0.18127   5.105 3.31e-07 *** 

Haulyr_F2000   0.16269    0.15415   1.055 0.291244     

Haulyr_F2001   0.20230    0.14512   1.394 0.163319     

Haulyr_F2002  -0.43209    0.14434  -2.994 0.002758 **  

Haulyr_F2003  -0.10595    0.15070  -0.703 0.482012     

Haulyr_F2004  -0.18227    0.15490  -1.177 0.239317     

Haulyr_F2005  -0.51485    0.14375  -3.582 0.000342 *** 

Haulyr_F2006  -0.99441    0.15663  -6.349 2.17e-10 *** 

Haulyr_F2007  -1.13296    0.14817  -7.647 2.07e-14 *** 

Haulyr_F2008  -1.22706    0.17250  -7.113 1.13e-12 *** 

Haulyr_F2009  -1.16714    0.15687  -7.440 1.01e-13 *** 

Haulyr_F2010  -0.89697    0.15898  -5.642 1.68e-08 *** 

Haulyr_F2011  -0.78327    0.16090  -4.868 1.13e-06 *** 

Haulyr_F2012  -1.11385    0.17871  -6.233 4.59e-10 *** 

Haulyr_F2013  -0.95603    0.18758  -5.097 3.46e-07 *** 



 

33 

Haulyr_F2014  -0.51803    0.15810  -3.277 0.001051 **  

Haulyr_F2015  -0.15711    0.15149  -1.037 0.299700     

Haulyr_F2016  -0.30686    0.15673  -1.958 0.050250 .   

Haulyr_F2017  -1.01256    0.16296  -6.213 5.18e-10 *** 

Haulyr_F2018  -0.92332    0.16532  -5.585 2.34e-08 *** 

Haulyr_F2019  -0.85533    0.15424  -5.546 2.93e-08 *** 

Region_F2     -0.36281    0.11403  -3.182 0.001464 **  

Region_F3     -1.78733    0.11624 -15.376  < 2e-16 *** 

Region_F4     -1.63555    0.11309 -14.463  < 2e-16 *** 

Region_F5     -2.73967    0.11962 -22.904  < 2e-16 *** 

Region_F6     -1.77071    0.11893 -14.888  < 2e-16 *** 

Region_F7     -4.40210    0.29301 -15.024  < 2e-16 *** 

Region_F8     -2.95524    0.16364 -18.060  < 2e-16 *** 

Sector_F2      2.25279    0.04800  46.929  < 2e-16 *** 

SST            0.12660    0.01856   6.820 9.13e-12 *** 

Log(theta)     0.04338    0.05543   0.783 0.433808     

Zero-inflation model coefficients (binomial with logit link): 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)   32.08264    1.79451  17.878  < 2e-16 *** 

SST           -1.38567    0.07446 -18.611  < 2e-16 *** 

Haulyr_F1995  0.64056    0.74204   0.863 0.388006     

Haulyr_F1996  0.03533    0.81595   0.043 0.965459     

Haulyr_F1997 -0.37150    0.81165  -0.458 0.647158     

Haulyr_F1998  0.92887    0.80737   1.150 0.249942     

Haulyr_F1999  0.19602    0.75531   0.260 0.795230     

Haulyr_F2000  1.40252    0.69167   2.028 0.042588 *   

Haulyr_F2001  0.30768    0.66680   0.461 0.644493     

Haulyr_F2002 -2.38275    1.45180  -1.641 0.100748     

Haulyr_F2003  0.57361    0.78312   0.732 0.463879     

Haulyr_F2004  3.07808    0.67275   4.575 4.75e-06 *** 

Haulyr_F2005 -0.96951    0.68677  -1.412 0.158037     

Haulyr_F2006  1.13595    0.82623   1.375 0.169174     

Haulyr_F2007 -0.74638    0.75684  -0.986 0.324040     
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Haulyr_F2008  0.68911    0.71550   0.963 0.335492     

Haulyr_F2009  0.92001    0.69130   1.331 0.183237     

Haulyr_F2010  1.50317    0.67737   2.219 0.026478 *   

Haulyr_F2011  1.70301    0.65882   2.585 0.009740 **  

Haulyr_F2012  2.12026    0.67511   3.141 0.001686 **  

Haulyr_F2013  2.76371    0.73647   3.753 0.000175 *** 

Haulyr_F2014  2.78437    0.66456   4.190 2.79e-05 *** 

Haulyr_F2015  2.70501    0.64569   4.189 2.80e-05 *** 

Haulyr_F2016  2.38434    0.64401   3.702 0.000214 *** 

Haulyr_F2017  2.05314    0.68381   3.003 0.002678 **  

Haulyr_F2018  2.56696    0.68218   3.763 0.000168 *** 

Haulyr_F2019  2.25124    0.68497   3.287 0.001014 **  

 

Theta = 1.0443  

Log-likelihood: -2.377e+04 on 63 Df 

> AIC(OWT_ZINB_13) 

[1] 47674.12 
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Table B. 2. The R summary function output for the base case, or best-fitting ZINB model 
structure (fitted model object is OWT_Best_ZINB based on the results of the forward-
entry variable selection shown in Table 4. 

> f_Best<-formula(OWT_Shark~Haulyr_F+Region_F+Sector_F+latitude+longitude+SST 

+offset(log(Hooks))  | SST +Haulyr_F) 

> OWT_Best_ZINB<-zeroinfl(f_Best,data=OWT_Data,dist=“negbin,” link=“logit”) 

> summary(OWT_Best_ZINB), 

Call: zeroinfl(formula = f, data = OWT_Data, dist = "negbin," link = “logit”) 

Pearson residuals: 

     Min        1Q       Median       3Q         Max  

-0.90941 -0.30049 -0.15569 -0.02246 39.14010  

Count model coefficients (negbin with log link): 

                  Estimate     Std. Error z value Pr(>|z|)     

(Intercept) -22.804134   0.863317 -26.415  < 2e-16 *** 

Haulyr_F1995   1.001911   0.166873   6.004 1.92e-09 *** 

Haulyr_F1996   0.603915   0.161472   3.740 0.000184 *** 

Haulyr_F1997   0.711352   0.173280   4.105 4.04e-05 *** 

Haulyr_F1998   0.404378   0.164859   2.453 0.014172 *   

Haulyr_F1999   0.786437   0.179964   4.370 1.24e-05 *** 

Haulyr_F2000  -0.025874   0.152324  -0.170 0.865117     

Haulyr_F2001   0.052235   0.144529   0.361 0.717789     

Haulyr_F2002  -0.450347   0.143893  -3.130 0.001750 **  

Haulyr_F2003  -0.117917   0.148630  -0.793 0.427566     

Haulyr_F2004  -0.285036   0.154834  -1.841 0.065634 .   

Haulyr_F2005  -0.479865   0.143221  -3.351 0.000807 *** 

Haulyr_F2006  -1.065257   0.154092  -6.913 4.74e-12 *** 

Haulyr_F2007  -1.203005   0.147927  -8.132 4.21e-16 *** 

Haulyr_F2008  -1.270597   0.165630  -7.671 1.70e-14 *** 

Haulyr_F2009  -1.316790   0.154721  -8.511  < 2e-16 *** 

Haulyr_F2010  -1.089455   0.155770  -6.994 2.67e-12 *** 

Haulyr_F2011  -0.963988   0.157634  -6.115 9.63e-10 *** 

Haulyr_F2012  -1.413079   0.167451  -8.439  < 2e-16 *** 

Haulyr_F2013  -1.297550   0.173999  -7.457 8.84e-14 *** 

Haulyr_F2014  -0.694037   0.153929  -4.509 6.52e-06 *** 
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Haulyr_F2015  -0.210119   0.150376  -1.397 0.162325     

Haulyr_F2016  -0.445599   0.154965  -2.875 0.004034 **  

Haulyr_F2017  -0.958710   0.159580  -6.008 1.88e-09 *** 

Haulyr_F2018  -0.922354   0.163436  -5.644 1.67e-08 *** 

Haulyr_F2019  -0.781351   0.153873  -5.078 3.82e-07 *** 

Region_F2       -1.255354   0.122659 -10.235  < 2e-16 *** 

Region_F3       -1.683700   0.134953 -12.476  < 2e-16 *** 

Region_F4       -2.220811   0.138432 -16.043  < 2e-16 *** 

Region_F5       -2.101683   0.156567 -13.424  < 2e-16 *** 

Region_F6       -2.024358   0.166232 -12.178  < 2e-16 *** 

Region_F7       -3.459418   0.326811 -10.585  < 2e-16 *** 

Region_F8       -2.987639   0.231960 -12.880  < 2e-16 *** 

Sector_F2         2.100802   0.049579  42.373  < 2e-16 *** 

Latitude           -0.054870   0.006029  -9.100  < 2e-16 *** 

Longitude        -0.090373   0.004350 -20.775  < 2e-16 *** 

SST                   0.089651   0.019034   4.710 2.48e-06 *** 

Log(theta)         0.088479   0.056770   1.559 0.119103     

 

Zero-inflation model coefficients (binomial with logit link): 

                   Estimate Std. Error   z value Pr(>|z|)     

(Intercept)   35.31701    2.42879  14.541  < 2e-16 *** 

SST             -1.52196    0.10315 -14.754  < 2e-16 *** 

Haulyr_F1995  0.75629    0.74132   1.020 0.307632     

Haulyr_F1996  0.15522    0.82461   0.188 0.850693     

Haulyr_F1997 -0.74126    0.87240  -0.850 0.395504     

Haulyr_F1998  0.74697    0.83920   0.890 0.373412     

Haulyr_F1999  0.19398    0.78431   0.247 0.804652     

Haulyr_F2000  1.10934    0.72607   1.528 0.126545     

Haulyr_F2001  0.04342    0.70834   0.061 0.951121     

Haulyr_F2002 -2.54976    1.45128  -1.757 0.078935 .   

Haulyr_F2003  0.46149    0.80139   0.576 0.564707     

Haulyr_F2004  2.96682    0.71362   4.157 3.22e-05 *** 

Haulyr_F2005 -1.31250    0.71183  -1.844 0.065207 .   
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Haulyr_F2006  0.72497    0.94684   0.766 0.443869     

Haulyr_F2007 -0.97630    0.77833  -1.254 0.209716     

Haulyr_F2008  0.18105    0.75507   0.240 0.810497     

Haulyr_F2009  0.43637    0.72843   0.599 0.549141     

Haulyr_F2010  1.09103    0.70999   1.537 0.124371     

Haulyr_F2011  1.39817    0.68433   2.043 0.041040 *   

Haulyr_F2012  1.43040    0.71611   1.997 0.045777 *   

Haulyr_F2013  1.28306    0.97075   1.322 0.186262     

Haulyr_F2014  2.18924    0.70873   3.089 0.002008 **  

Haulyr_F2015  2.53290    0.67870   3.732 0.000190 *** 

Haulyr_F2016  2.14191    0.67559   3.170 0.001522 **  

Haulyr_F2017  1.88389    0.71138   2.648 0.008092 **  

Haulyr_F2018  2.50330    0.71708   3.491 0.000481 *** 

Haulyr_F2019  2.33607    0.71471   3.269 0.001081 **  

--- 

Theta = 1.0925  

Log-likelihood: -2.348e+04 on 65 Df 

> AIC(OWT_ZINB_Model) 

[1] 47086.78 
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Appendix C. Model diagnostic plots of quantile residuals (Dunn and Smyth 
1996) for the best-fitting CPUE standardization model for oceanic whitetip 
shark caught in the Hawaii longline fishery during 1994-2019 (Figures C.1 to 
C.9). 

 

Figure C. 1. Histogram of quantile residuals for the best-fitting CPUE standardization 
model. 
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Figure C. 2. Quantile-quantile plot of quantile residuals for the best-fitting CPUE 
standardization model. 
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Figure C. 3. Plot of quantile residuals vs. fitted values of oceanic whitetip sharks per set 
for the best-fitting CPUE standardization model. 
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Figure C. 4. Tukey boxplots of quantile residuals vs. year for the best-fitting CPUE 
standardization model. 
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Figure C. 5. Tukey boxplots of quantile residuals vs. fishing region for the best-fitting 
CPUE standardization model. 
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Figure C. 6. Tukey boxplots of quantile residuals vs. fishery sector for the best-fitting 
CPUE standardization model. 



 

44 

 

Figure C. 7. Plot of quantile residuals vs. sea surface temperature (°C) for the best-fitting 
CPUE standardization model. 
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Figure C. 8. Plot of quantile residuals vs. latitude (°N) for the best-fitting CPUE 
standardization model.. 
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Figure C. 9. Plot of quantile residuals vs. longitude (°W) for the best-fitting CPUE 
standardization model 
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Appendix D. Potential impacts of changes in data collection practices on shark 
bycatch monitoring in the Hawaii longline fishery 

We have historically used the PIROP fishery observer data for several types of fishery analyses 
(Walsh and Brodziak 2016; Walsh and Kleiber 2001; Walsh et al. 2002; Walsh et al. 2009), 
including the evaluation of self-reporting accuracy of shark catches in commercial logbooks. In 
this case, we have used 20-year (1995‒2014) and 15-year (2000‒2014) subsets of the logbook 
data to compare annual shark catches reported by observers vs. catches reported in logbooks in 
the set of observed fishing trips. During these time periods, three major changes occurred in the 
Hawaii longline fishery: (1) the PIROP increased its coverage of the longline fleet by about 
fourfold during 2000‒2001; (2) the two-sector management regime (shallow-set and deep-set) 
was initiated in 2001; (3) a data entry field for oceanic whitetip shark was added to the logbook 
form in 2000. These changes impacted the data on shark bycatch collected from the Hawaii 
longline fishery. 

The annual shark catch totals reported by the PIROP observers and in the logbooks throughout 
1995‒2014 (Figure D.1) show low observed catches that were associated with low observer 
coverage rates (ca. 5%) during 1995‒1999. As of 2000‒2001, however, the three aforementioned 
changes in this fishery (Figure D.2) had begun. Blue shark was the predominant shark bycatch 
species (Figure D.3, 85.7% of observed shark catches), and the observed totals were always 
greater than the logbook totals (Figures D.1 to D.3). The percent differences between the 
observer-reported shark catches and the self-reported catches from logbooks were substantial for 
the monitored shark species in this fishery. The underreporting rates for blue shark, mako sharks, 
thresher sharks, and oceanic whitetip shark averaged 11.3%, 13.5%, 15.0% and 18.4%, 
respectively during 2000-2014. It is also important to note that the apparent percent 
underreporting rates of oceanic whitetip sharks during 2000‒2005 were greater and significantly 
different from those of all other monitored shark species, as indicated by a one-way analysis of 
covariance and the Tukey HSD test (Table D.2) and shown by the apparent underreporting 
(Figures D.4 to D.6) trends. 
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Conclusion 

Our previous work (Walsh and Brodziak 2016; Walsh and Kleiber 2001; Walsh et al. 2002; 
Walsh et al. 2009) has demonstrated that reporting accuracy in commercial logbooks can be 
adversely affected by changes in data collection procedures. For example, some fishermen were 
probably confused about their reporting requirements when observer deployments became more 
frequent beginning in 2000. Thus, the short-term increases in the apparent underreporting of blue 
sharks, makos, and threshers were not unexpected. However, significantly greater apparent 
underreporting of oceanic whitetip shark than all other sharks during 2000‒2005 was unexpected 
in two ways. First, because the oceanic whitetip shark was a common bycatch species in this 
fishery and easily recognized from its (formerly valuable) fins and overall appearance, 
misidentifications would not be expected. Second, although an entry space for oceanic whitetip 
shark was added to the logbook form in 2000, the apparent underreporting of this species 
persisted for six years. Therefore, we conclude that evaluation of the effectiveness of fishery 
management procedures to restore threatened sharks taken as bycatch may be difficult, 
particularly if fishery observer coverage rates are low or non-existent or if commercial logbooks 
with their inherent biases are to be relied upon as the primary monitoring tool. 
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Table D. 1. Percent differences between observed and self-reported shark bycatch 
recorded on observed Hawaii longline trips during 2000‒2014. Explanatory notes are 
presented in the footnote4.  

Haul year Blue shark Mako shark Thresher shark Oceanic 
whitetip shark 

2000 26.5 21.7 10.8 58 

2001 23.7 21.5 34.1 28.1 

2002 16.6 14.8 20.7 24.3 

2003 8.6 3.3 16.1 28.8 

2004 8.8 1.9 18.1 25.9 

2005 6.8 16 9.4 26.1 

2006 11.3 9.4 15.8 8.1 

2007 5 17.5 14 4.2 

2008 6.4 18.6 0.7 5.2 

2009 8.7 5.6 12.8 5 

2010 6.1 1.5 10.5 18.6 

2011 8.5 11.2 14.5 9.9 

2012 11.4 20.5 14.4 5 

2013 13.9 16.5 24.9 21.4 

2014 7.4 22.2 7.6 7.3 

Average 11.3 13.5 15.0 18.4 

                                                 

 

4 The boldface value for oceanic whitetip sharks (2006) was calculated after deleting one trip (LL2103). There were 
differences between the observer (on his second trip) and the logbooks in total sharks and all individual species, 
none of which were readily comprehensible.  
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Table D. 2. Analysis of covariance of the percent underreporting of the four shark 
species during 2000‒2005, spanning the transition period to two-sector management. 
The observed data consist of the underreported shark catch data from the monitored 
shark species. The variable “Sp_code” is a factor variable that denotes the four shark 
species groups tested for significance in underreporting (blue shark, oceanic whitetip 
shark, mako sharks and thresher sharks), and the “Time” variable denotes the linear 
term representing temporal trend.  

> summary(model) 

                            Df      Sum Sq  Mean Sq  F value     Pr(>F)    

Sp_code      3     1276.6       425.5      6.892  0.00249 ** 

Time                  1          794.1             794.1            12.862             0.00197 ** 

Residuals            19        1173.1               1.7                    

> TukeyHSD(model) 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

Fit: aov(formula = Species_diffs ~ Sp_code + Time) 

Species codes (Sp_code factor levels: 1 = Blue shark; 2 = OWT shark; 3 = Makos; 4 = 
Threshers) 

Sp_code 

          diff                lwr               upr           p adj 

2-1  16.690600   3.934453   29.4467463 0.0079383 

3-1  -1.962648  -14.718795 10.7934988 0.9721145 

4-1   3.033578  -9.722569   15.7897244 0.9075687 

3-2 -18.653248 -31.409394 -5.8971008 0.0030501 

4-2 -13.657022 -26.413169 -0.9008752 0.0333013 

4-3   4.996226   -7.759921  17.7523724 0.6930368 
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Figure D. 1. Time series plots of total shark catches taken on observed fishing trips 
during 1995‒2014 as reported by PIROP observers (solid circles) and self-reported in 
commercial logbooks (open circles).  
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Figure D. 2. Time series plots of total shark catches taken on observed fishing trips 
during 2000‒2014 as reported by PIROP observers (open circles) and self-reported in 
commercial logbooks (solid circles). 
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Figure D. 3. Time series plots of blue shark catches taken on observed fishing trips 
during 2000‒2014 as reported by PIROP observers (solid circles) and self-reported in 
commercial logbooks (open circles). 
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Figure D. 4. Comparison plot showing the oceanic whitetip shark (open circles) apparent 
underreporting and the blue shark (solid circles) apparent underreporting trends. 
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Figure D. 5. Comparison plot showing the oceanic whitetip shark (open circles) apparent 
underreporting and the thresher shark (solid circles) apparent underreporting trends. 
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Figure D. 6. Comparison plot showing the oceanic whitetip shark (open circles) apparent 
underreporting and the thresher shark (solid circles) apparent underreporting trends. 
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